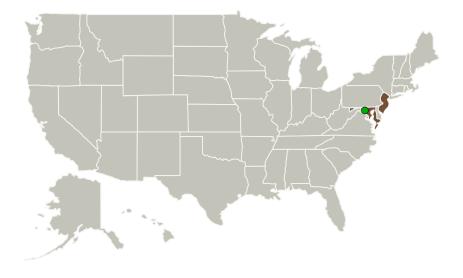
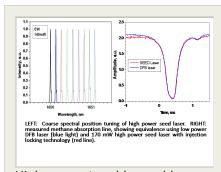
High-Power Tunable SeedLaser for Methane LIDAR Transmitter, Phase I



Completed Technology Project (2015 - 2015)


Project Introduction

Growing interest in precise measurements of methane concentration and distribution in the Earth's atmosphere is stimulating efforts to develop LIDAR systems in the spectral region of 1.65 μm utilizing Path Differential Absorption techniques. The key element of such systems is a high energy optical source with good beam properties operating in the vicinity of a methane absorption line. A number of very promising architectures for designing high energy lasers at 1651 nm have been described recently, but the performance of the lasers developed in these earlier efforts has been limited by the lack of a sufficiently high-power tunable seed laser. For this SBIR Phase I program, we propose to develop a robust seed laser that is fiber-coupled, narrow linewidth, tunable, highly reliable, compact, and which ultimately will allow the realization of much higher performance high energy laser sources designed for methane detection.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Princeton Lightwave,	Lead	Industry	Cranbury,
Inc.	Organization		New Jersey
Goddard Space Flight Center(GSFC)	Supporting	NASA	Greenbelt,
	Organization	Center	Maryland

High-power tunable seed laser for methane LIDAR transmitter, Phase I

Table of Contents

Project Introduction Primary U.S. Work Locations	1
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	
Technology Areas	
Target Destinations	

Small Business Innovation Research/Small Business Tech Transfer

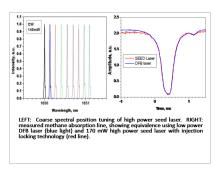
High-Power Tunable SeedLaser for Methane LIDAR Transmitter, Phase I

Completed Technology Project (2015 - 2015)

Primary U.S. Work Locations	
Maryland	New Jersey

Project Transitions

June 2015: Project Start


December 2015: Closed out

Closeout Summary: High-power tunable seed laser for methane LIDAR transm itter, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/138948)

Images

Briefing Chart Image

High-power tunable seed laser for methane LIDAR transmitter, Phase I

(https://techport.nasa.gov/imag e/136677)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Princeton Lightwave, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

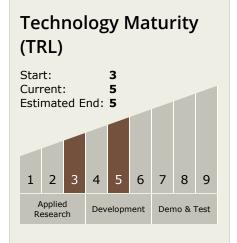
Carlos Torrez

Principal Investigator:

Igor Kudryashov

Co-Investigator:

Igor Kudryashov



Small Business Innovation Research/Small Business Tech Transfer

High-Power Tunable SeedLaser for Methane LIDAR Transmitter, Phase I

Completed Technology Project (2015 - 2015)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - └─ TX08.1 Remote Sensing Instruments/Sensors
 └─ TX08.1.5 Lasers

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

